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1 OLS and the “Classic” Assumptions

The “classic” OLS assumptions are necessary to prove unbiasedness and calculate the variance of
the OLS estimator. Note that we did not have to assume any of these prior to our derivation of the
OLS estimator.

A1 : yi = βxi + εi is the true DGP

A2 : xi is nonrandom

A3 : E[εi] = 0 ∀i
A4 : V ar(εi) = σ2 i = 1, . . . , n (“homoskedastic”)

Cov(εi, εj) = 0 ∀i 6= j (“no correlation”)

(sometimes) A5 : εi ∼ Normally

You might wonder what “sometimes” means. If we make assumption A5, then we’ll have

β̂ ∼ N

(
β,

σ2∑
x2i

)
.

If we don’t then we’ll have (using the Central Limit Theorem)

β̂ ∼A N

(
β,

σ2∑
x2i

)
.

The difference is whether or not we think our sample size is large enough for the distribution
to converge. If we don’t think so, assuming that the errors are normal will do the trick. If we do
think so, then we might avoid making the assumption altogether. Now lets calculate the mean and
variance of the OLS estimator. First, the mean.
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E
[
β̂OLS

]
= E


∑
i

yixi∑
i

x2i


= E


∑
i

(βxi + εi)xi∑
i

x2i

 (A1)

= E

β +

∑
i

xiεi∑
i

x2i


= β +

∑
i

xiE[εi]∑
i

x2i
(A2)

= β (A3)

That is, the OLS estimator is unbiased. Now we find the variance.

V ar
(
β̂OLS

)
= V ar


∑
i

xiyi∑
i

x2i


= V ar


∑
i

xi(βxi + εi)∑
i

x2i

 (A1)

= V ar

β +

∑
i

xiεi∑
i

x2i


= V ar


∑
i

xiεi∑
i

x2i

 (the variance of a constant is zero)

=
1(∑

i

x2i

)2V ar

(∑
i

xiεi

)
(pull constant out and square)

=
1(∑

i

x2i

)2

[∑
i

x2iV ar(εi) +
∑
i 6=j

xixjCov(εi, εj)

]
(apply general formula; A2)

=
1(∑

i

x2i

)2

[
σ2
∑
i

x2i

]
(A4)

=
σ2∑
i

x2i
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2 Population Value of the OLS parameter

Given the model,

yi = β0 + β1xi + εi

we can derive the population value of β1.

Cov(xi, yi) = Cov(xi, β0 + β1xi + εi) (plugging in for yi)

Cov(xi, yi) = Cov(xi, β0) + Cov(xi, β1xi) + Cov(xi, εi) (property of Cov)

Cov(xi, yi) = 0 + β1Cov(xi, xi) + Cov(xi, εi) (β0 & β1 are constants)

Cov(xi, yi) = β1V ar(xi) + Cov(xi, εi) (property of Cov)

Cov(xi, yi) = β1V ar(xi) + 0 (assumption)

=⇒ β1 =
Cov(xi, yi)

V ar(xi)

3 Why do we use OLS?

We might ask ourselves, why are we using OLS instead of some other estimator. Restricting ourselves
might seem severe. After all, we often have reason to believe that variables are related in nonlinear
ways. However, we should not fret. That OLS is a linear model simply means that it is linear in
the coefficients (not the variables). Consider the following:

yi = α + β1x1i + β2x
2
1i + εi.

Many people would say that this is not a linear regression. However, what if we simply called
x2i = x21i (the computer doesn’t really care what we call the variables; all it does it take the
numbers and doesn’t interpret whether or not they are nonlinear). Thus we can write our problem
as

yi = α + β1x1i + β2x2i + εi.

In fact we can do this for any transformation of our variables (logs, for instance).
In addition to the above, there is a very important theorem that explains why OLS might be

the preferred. Colloquially, if the classic OLS assumptions introduced earlier hold, OLS is the best
in the class of linear estimators.
Gauss-Markov Theorem: If E[εi] = 0, V ar(εi) = σ2 < ∞ ∀ i, and Cov(εi, εj) = 0 forall i 6= j,
then the Ordinary Least Squares estimator is the Best Linear Unbiased Estimator (BLUE), where
best means “lowest variance.”
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