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1 Introduction

One of the main goals of science is to uncover causal relationships. The problem, for those
concerned with social or economic policy, is that we seldom are able to perform controlled
experiments similar to those conducted by natural scientists. Instead, we draw our infer-
ences from the analysis of non-experimental data, and that is the function of econometrics.
The main tool of econometricians is the regression, a statistical tool for understanding the
relationship between different variables. Before learning about the regression we first need
to review some math and statistics.

2 Math & Stats Review

2.1 Expected Value

One of the more important features of the distribution of a random variable is its expected
value. This feature gives us an idea about where a distribution is centered. Some books
might call the expected value the “long-run average” of an experiment. That is, it’s the
average of an experiment if we were to continually repeat the experiment. How we write the
expected value depends on whether or not the variable is discrete or continuous (but notice
the similarities).

E[X] =
∞∑
i=1

xipi (Discrete)

E[X] =

∞∫
−∞

xf(x)dx (Continuous)

There are a few useful properties of expected values that we should be very comfortable
with in this class. Let X and Y be random variables; let a and b be scalar constants.

E[a] = a

E[aX] = aE[X]

E[X + Y ] = E[X] + E[Y ]

E[aX + bY ] = aE[X] + bE[Y ] (this simply combines the previous two)

This is often called the “linearity of expectations” because scalar multiplication and addition
are both linear operators. As a side note, because we like to write things succinctly, we often
times will define µ ≡ E[X].
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2.2 Variance, Standard Deviation, and Covariance

Another important feature of a distribution is its variance (and, by extension, its standard
deviation). This gives us a measure of the spread, or dispersion, of the outcomes of a random
variable. It is defined as follows.

V ar(X) = E[(X − E(X))2]

= E[X2]− (E[X])2 (another way to write it)

Again, because we love notation, we’ll often write V ar(X) = σ2. Next, the standard devia-
tion of the random variable X is simply the square root of its variance. I.e.

St.dev(X) =
√
V ar(X) or σ =

√
σ2

Last, the covariance of two random variables X and Y can tell us how they move to-
gether. That is, if X is high when Y is high, then the covariance is positive. If X is high
when Y is low (or vice versa), the covariance is negative. The covariance is defined as

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] ≡ σXY

Note: corr(X, Y ) = Cov(X,Y )
σXσY

.
Just like with the expected value, there are a lot of useful properties that we should be

very comfortable with.

V ar(a) = 0

V ar(aX) = a2V ar(X)

V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2ab Cov(X, Y )

Cov(a+X, b+ Y ) = Cov(X, Y )

Cov(aX, bY ) = ab Cov(X, Y )

Cov(X + Y, Z) = Cov(X,Z) + Cov(Y, Z)

Cov(X,X) = V ar(X)

Cov(X, a) = 0
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2.3 Derivatives and Optimization

Here we’ll just do a few examples to refresh our memory on differentiation. (The last one is
also useful to remind us how summations work.)

f(x, y) = log(xy) −→ ∂f

∂x
=

y

xy
=

1

x
,

∂f

∂y
=

1

y

y = α + βx+ δz + λxz −→ ∂y

∂z
= δ + λx

c(x) =
n∑
i=1

(βx+ 5mi) −→ dc(x)

dx
= nβ

Now consider a problem of optimization. Suppose we know that wage = β1+β2Age+β3Age
2

where β1 = 200, β2 = 800, and β3 = −10. At what age would you earn the highest wage?
40

2.4 Standard Error & Standard Deviation

The standard error is the standard deviation of a estimator (a function of random variables).
The standard error of the sample mean is an estimate of how far the sample mean is likely
to be from the population mean, whereas the standard deviation of the sample is the degree
to which individuals within the sample differ from the sample mean. If the population
standard deviation is finite, the standard error of the mean of the sample will tend to
zero with increasing sample size, because the estimate of the population mean will improve,
while the standard deviation of the sample will tend to approximate the population standard
deviation as the sample size increases.

Random Variable: Y σY =
√
V ar(Y )

Estimator: µ̂ =
1

n

∑
yi σµ̂ =

√
V ar(µ̂)
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Standard Error of µ̂:

σµ̂ =
√
V ar(µ̂)

=

√
V ar

(
1

n

∑
yi

)

=

√(
1

n

)2

V ar
(∑

yi

)

=

√√√√√√( 1

n

)2

∑V ar (yi)︸ ︷︷ ︸
σ2
Y

+
∑
i 6=j

Cov(yi, yj)︸ ︷︷ ︸
0


=

√(
1

n

)2 [∑
σ2
Y

]
=

√(
1

n

)2

[nσ2
Y ]

=

√
σ2
Y

n

=
σY√
n
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Standard Error of β̂:

SE
(
β̂
)

= σβ̂ =

√
V ar(β̂)

=

√
V ar

(∑
xiyi∑
x2i

)

=

√
V ar

(∑
xi(βxi + εi)∑

x2i

)

=

√
V ar

(
β
∑
x2i∑
x2i

+

∑
xiεi∑
x2i

)

=

√
V ar

(
β +

∑
xiεi∑
x2i

)

=

√
V ar

(∑
xiεi∑
x2i

)

=

√(
1∑
x2i

)2

V ar
(∑

xiεi

)
=

√√√√( 1∑
x2i

)2
[∑

V ar (xiεi) +
∑
i 6=j

xixjCov(εi, εj)

]

=

√√√√√√( 1∑
x2i

)2

∑x2i V ar (εi)︸ ︷︷ ︸
σ2
ε

+
∑
i 6=j

xixj Cov(εi, εj)︸ ︷︷ ︸
0


=

√(
1∑
x2i

)2 [∑
x2iσ

2
ε

]
=

√(
1∑
x2i

)2 [
σ2
ε

∑
x2i

]
=

√(
σ2
ε∑
x2i

)
=

σε√∑
x2i

3 Parameters & Estimators

First we need to learn some definitions to fix some ideas. Being able to understand the
different “levels” that we will be working with will make other things much more easy to
wrap your heads around.
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Parameter: true characteristic / feature about something (often unknown); (e.g. µ = E[Yi],
σ2 = V ar(Yi), β)

Estimator: a function of a random variable(s) used to obtain an estimate for some param-

eter of interest; (e.g. µ̂ = 1
n

∑
Yi, σ̂2 = 1

n−1
∑

(Yi − Y )2, β̂)

Estimate: the value obtained after applying an estimator to actual data; (e.g. m, s2, b)

3.1 Model of the Sample Mean

Here we will formalize what we already know about the sample mean and situate ourselves
in the “big picture” we just saw. First, we’ll want to be explicit about the assumptions we
are making for this model. This might seem weird at first, but (in due time) this should
hopefully make more sense.

A1 : Yi = µ+ εi is the true DGP and we have i = 1, . . . , n observations

A2 : E[εi] = 0

A3 : V ar(εi) = σ2 ∀i
Cov(εi, εj) = 0 ∀i 6= j

(sometimes) A4 : εi ∼ Normally

What we are interested in is trying to determine what µ is (the parameter of interest). To
get an idea, we can utilize the sample mean estimator, µ̂ = 1

n

∑n
i Yi, to give us an estimate

(presuming, of course, that we have data on yi).

3.2 Important Properties of Estimators

Unbiasedness: An estimator of β is unbiased if and only if E[β̂] = β. This is to say that,
on average, the estimates obtained from the estimator are the truth.

Example: consider the sample average as an estimator for µ and show that it is unbiased.
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E[µ̂] = E

[
1

n

n∑
i=1

Yi

]

= E

[
1

n

n∑
i=1

(µ+ εi)

]
(A1)

= E

[
1

n

n∑
i=1

µ+
1

n

n∑
i=1

εi

]
(arithmetic)

= µ+
1

n

n∑
i=1

E[εi] (distributing the expected value)

= µ (A2)

Efficiency: This is a way of getting at how accurate an estimator is. Where as unbiasedness
is concerned about the mean of an estimator, efficiency is concerned about the variance of
an estimator. If an estimator has low variance, it is said to be efficient. (Note that efficiency
is a relative term. That is, one estimator is more efficient than another.) To give us a simple
warm-up exercise, let’s calculate the variance of an estimator.

Example: consider the sample average as an estimator for µ and find its variance.

V ar(µ̂) = V ar

(
1

n

n∑
i=1

Yi

)

= V ar

(
1

n

n∑
i=1

(µ+ εi)

)
(A1)

= V ar

(
µ+

1

n

n∑
i=1

εi

)
(arithmetic)

= V ar

(
1

n

n∑
i=1

εi

)
(variance of a constant is 0)

=
1

n2

[
n∑
i=1

V ar(εi) +
∑
i 6=j

Cov(εi, εj)

]
(generalized variance rule)

=
1

n�2
�nσ

2 (A3)

=
σ2

n

Below is a graph that illustrates both of the above properties.
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3.3 (Linear) Regression Estimator

Now let’s take this structure to regressions. A regression is a statistical process for estimat-
ing the relationship between variables. There are many “types” of regressions that we might
want to run. We will mostly consider regression models of the following variety (for now we
abstract away from an intercept for simplicity of algebra).

yi = βxi + εi i = 1, 2, . . . , n (Model / DGP)

yi = β̂xi + ei

where yi is the dependent variable, xi is the independent variable, β is the slope parameter, εi
is the error term, β̂ is the slope estimator, and ei is the residual. One of the most important
“things” in the regression model is how the error term is structured. The error term (which
is unobserved) captures all of the things that impact yi that are not included as right hand
side variables.

The “residual” is the term used for what we can think of as the “estimator of the error
term.” That is, suppose we had some estimate for β obtained using β̂. The residuals would
be given by the vertical distance between an observation and the estimated line:

ei = yi − β̂xi

10



Let’s take a step back and try to visualize these things (remembering the different “levels”
that we are operating on from the beginning of today).

The question still remains, though: how do we (formally) draw a line of “best fit”? There
are a couple different ways. The first, most natural way might be to minimize the sum of
the residuals (the distances between the points and our line). Does anyone see a problem
with this? (Indeed, by doing so points above the line might cancel out with points below
the line and we would effectively be throwing away important information.) To address this
problem of “negative” residuals canceling out positive ones, we will square the residuals,
making them all positive. Then we minimize the sum of those. That is, we will draw a line
such that we are minimizing the sum of the squared residuals (SSR). This will give us the

Ordinary Least Squares estimator of β (sometimes written as β̂OLS). Mathematically,

β̂OLS ≡ argmin
β̂

n∑
i=1

(
yi − β̂xi

)2
(recalling that ei = yi − β̂xi)

Now we want to actually find the equation for β̂OLS. All we have to do is find the critical
point that minimizes the function above. To do so, we differentiate w.r.t. β̂, set it equal to
zero, and solve for β̂.
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F.O.C.:
n∑
i=1

−2(yi − β̂xi)xi = 0

⇐⇒ 2
n∑
i=1

yixi − 2β̂
n∑
i=1

x2i = 0

⇐⇒
n∑
i=1

yixi = β̂

n∑
i=1

x2i

⇐⇒ β̂OLS =

n∑
i=1

yixi

n∑
i=1

x2i

3.4 Example

Spring 2015, Midterm 1, Question 3. You have the following data

x1 = 1 y1 = 2

x2 = 6 y2 = 6

x3 = 4 y3 = 8

and the true DGP is yi = βxi + εi. Your friend calculated two estimates for β: β̂1 = 1 and
β̂2 = 2.

(a) Find the sum of squared residuals for β̂1. (hint: you should get an actual number)

Answer:

SSR1 = e21 + e22 + e23

= (y1 − β̂1x1)2 + (y2 − β̂1x2)2 + (y2 − β̂1x2)2

= (2− 1(2))2 + (6− 1(6))2 + (8− 1(4))2

= 17

(b) Find the sum of squared residuals for β̂2. (hint: you should get an actual number)
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Answer:

SSR2 = e21 + e22 + e23

= (y1 − β̂2x1)2 + (y2 − β̂2x2)2 + (y2 − β̂2x2)2

= (2− 2(2))2 + (6− 2(6))2 + (8− 2(4))2

= 36

(c) Which one of these two estimates is more likely to be the OLS estimate of β? Why?

Answer: β̂1 is more likely to be the OLS estimate of β since it has the smaller SSR.

(d) Find the estimate of β that has the smallest sum of squared residuals.

Answer: The OLS estimate of β that has the smallest SSR is given by

β̂OLS =

∑
yixi∑
x2i

=
2(1) + 6(6) + 8(4)

12 + 62 + 42
= 1.32

4 Ordinary Least Squares

4.1 OLS and the “Classic” Assumptions

There are some assumptions that we tend to make. These are often called the “classic”
OLS assumptions. These assumptions enable us to prove unbiasedness and calculate the
variance of the OLS estimator. Note that we did not have to assume any of these prior to
our derivation of the OLS estimator.

A1 : yi = βxi + εi is the true DGP

A2 : xi is nonrandom

A3 : E[εi] = 0 ∀i
A4 : V ar(εi) = σ2 i = 1, . . . , n (“homoskedastic”)

Cov(εi, εj) = 0 ∀i 6= j (“no correlation”)

(sometimes) A5 : εi ∼ Normally

You might wonder what “sometimes” means. If we make assumption A5, then we’ll have

β̂ ∼ N

(
β,

σ2∑
x2i

)
.
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If we don’t then we’ll have (using the Central Limit Theorem)

β̂ ∼A N
(
β,

σ2∑
x2i

)
.

The difference is whether or not we think our sample size is large enough for the distribution
to converge. If we don’t think so, assuming that the errors are normal will do the trick. If
we do think so, then we might avoid making the assumption altogether. Now lets calculate
the mean and variance of the OLS estimator. First, the mean.

E
[
β̂OLS

]
= E


∑
i

yixi∑
i

x2i


= E


∑
i

(βxi + εi)xi∑
i

x2i

 (A1)

= E

β +

∑
i

xiεi∑
i

x2i


= β +

∑
i

xiE[εi]∑
i

x2i
(A2)

= β (A3)

That is, the OLS estimator is unbiased. Now we find the variance (which is slightly more
difficult).
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V ar
(
β̂OLS

)
= V ar


∑
i

xiyi∑
i

x2i


= V ar


∑
i

xi(βxi + εi)∑
i

x2i

 (A1)

= V ar

β +

∑
i

xiεi∑
i

x2i


= V ar


∑
i

xiεi∑
i

x2i

 (the variance of a constant is zero)

=
1(∑

i

x2i

)2V ar

(∑
i

xiεi

)
(pull constant out and square)

=
1(∑

i

x2i

)2

[∑
i

x2iV ar(εi) +
∑
i 6=j

xixjCov(εi, εj)

]

(apply general formula; A2)

=
1(∑

i

x2i

)2

[
σ2
∑
i

x2i

]
(A4)

=
σ2∑
i

x2i

4.2 Why do we use OLS?

We might ask ourselves, why are we using OLS instead of some other estimator. Restricting
ourselves might seem severe. After all, we often have reason to believe that variables are
related in nonlinear ways. However, we should not fret. That OLS is a linear model simply
means that it is linear in the coefficients (not the variables). Consider the following:

yi = α + β1x1i + β2x
2
1i + εi.

Many people would say that this is not a linear regression. However, what if we simply called
x2i = x21i (the computer doesn’t really care what we call the variables; all it does it take the

15



numbers and doesn’t interpret whether or not they are nonlinear). Thus we can write our
problem as

yi = α + β1x1i + β2x2i + εi.

In fact we can do this for any transformation of our variables (logs, for instance).

In addition to the above, there is a very important theorem that explains why OLS might
be the preferred. Colloquially, if the classic OLS assumptions introduced earlier hold, OLS
is the best in the class of linear estimators.

Gauss-Markov Theorem: If E[εi] = 0, V ar(εi) = σ2 < ∞ ∀ i, and Cov(εi, εj) = 0
forall i 6= j, then the Ordinary Least Squares estimator is the Best Linear Unbiased
Estimator (BLUE), where best means “lowest variance.”

4.3 Functional Forms

Here we will get more in depth about how flexible our linear regression model is. When
writing down our typical multiple regression model,

yi = α + β1x1i + · · ·+ βkxki + εi i = 1, . . . , n

we are only requiring that equation is linear in the coefficients. This essentially means that
the LHS variable is a linear combination of RHS variables. We are free, then, to use RHS
variables that are transformations of what we typically use.

The usual transformations are higher ordered (e.g. quadratic) polynomial terms and
log transformations. Implementation of these different types of functional forms is fairly
straightforward. Given some starting multiple regression model, suppose we are wondering
whether or not we want to include a quadratic term for the variable Agei. What we could
do (and something I recommend) is to plot the relationship between the left hand variable,
let’s call it Incomei, and Agei. Does it look linear? Perhaps something else, like a parabola?
If so we might want to add in an Age2i term.

Here’s some tips you might want to remember.

• If you are including a cubic term, you should always include a quadratic and a linear
term (even if the coefficients on them are insignificant)

• Testing whether or not a variable has an effect in this sort of context (with a term and
a term2 included), we will typically use a joint (F) test (test that both are equal to
zero simultaneously)
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• Marginal effects will usually be functions of the RHS variables (and not constants).

4.4 Logarithmic Transformations

Economists often utilize logs (in particular natural logs: ln) because they are a nice way
of linearizing variables with exponential growth (eg. wages). There are three types of log-
transformed regression models: log-log, log-linear, linear-log

Examples:

ln(salaryi) = α + βhoursi + εi (log-linear)

ln(wagei) = α + βln(parentinci) + εi (log-log)

depositst = α + βln(GDPt) + εt (linear-log)

Another (very) useful thing about logs is that they are a great way of approximating per-
centage changes. Say, for example, that we wanted to approximate the percentage change of
going from 10 to 11 (10%). We can do the following:

ln(11)− ln(10) = 0.0953 ≈ 0.10

Recall, also, some useful log rules:

• ln(AB) = ln(A) + ln(B)

• ln(A/B) = ln(A)− ln(B)

That is, we could have written our approximation as ln(11/10). Further, the approximation
gets better the closer are A and B. Now, let’s return to our examples and interpret the β’s.

dln(salaryi)

dhoursi
= β −→ a 1 unit inc. in hours increases wage by 100× β%

dln(wagei)

dln(parentinci)
= β −→ a 1% increase in parent income increases wages by β%

ddepositst
dln(GDPt)

= β −→ a 1% increase in GDP increases deposits by β/100 dollars

Remember to include ceteris paribus if we were doing multiple regressions. Also notice that
in the second example (the coefficients in a log-log situation) are elasticities! Remember that
d or ∂ denote differentials (or infinitesimally small increments / changes).
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4.5 Coefficient Interpretation

A big part of this class is going to center around interpreting a regression model. In partic-
ular, we’ll want to interpret the coefficients. Recall our general regression model:

yi = α + β1x1i + β2x2i + · · ·+ βkxki + εi i = 1, 2, . . . , n

In words, α is the value of yi when all of the right hand variables are zero and βj is the effect
on yi obtained from increasing xki by one unit while holding all other variables constant (the
ceteris paribus interpretation). If our RHS variables are continuous, then the coefficients
have a partial derivative interpretation.

βj =
∂yi
∂xji

Consider the following example. Suppose we have the following model of wages,

wagei = α + β1Agei + β2Experi + β3Educi + β4SATi + εi.

Let’s see how well you can interpret the coefficients. α and εi are measured in dollars. β1,
β2, and β3 are measured in dollars per year. β4 is measured in dollars per point. The inter-
pretations should always include: “holding all other variables constant.”

4.6 Binary Variables

A very important type of variable we commonly use are binary, or “dummy,” variables.
These are discrete variables that take on one of two possible values: zero or one.

Xi =

{
1
0

Interpreting regressions with dummy variables is fairly straightforward, but can be confusing
at first. Consider the following 3 regression:
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ln(wagei) = α1 + α2FEi + εi (1)

ln(wagei) = β1 + β2Mi + εi (2)

ln(wagei) = γ1FEi + γ2Mi + εi (3)

Indeed, each of the three regressions above tell us the same thing, it’s getting at that infor-
mation which is slightly different. Going through, we can determine what the expected log
wages for men and women and the difference in means.

Specification Female Male Difference

(1) α1 + α2 α1 α2

(2) β1 β1 + β2 −β2
(3) γ1 γ2 γ1 − γ2

4.7 Perfect Multicollinearity

When using specifications with sets of binary models, we have to be very careful with what
we include in the regression. Notice, importantly, that an intercept term is not included
in the third specification. Including it would result in perfect multicollinearity, a situation
where one of the right hand side variables (covariates) can be written as a perfect linear
combination of others. In our example, if we were to add in an intercept (which you can
think of adding in the variable 1 with a coefficient α) then we can write:

1 = FEi +Mi ⇐⇒ 1 = FEi + (1− FEi) ⇐⇒ 1 = 1

This is a problem because the addition of that last variable (the one that would induce
perfect multicollinearity) doesn’t add any new information to the regression, and so we won’t
be able to determine what effect should be attributed to which variable. Indeed, if we tried
to run the third regression with an intercept, we’d get an error (Eviews won’t run). When
there is perfect multicollinearity as a result of binary variables, it’s called the “dummy vari-
able trap.” Here are some tips when dealing with dummy variables in regressions:

• if you include an intercept, exclude exactly 1 of all exhaustive sets of binary variables

• if you include an exhaustive set of binary variables, you must exclude the intercept
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• if you have multiple exhaustive sets of binary variables and exclude an intercept, you
can only have 1 full set of binary variables (you must omit 1 from the others)

• when interpreting coefficients, the omitted variable is the “base case” and is what the
other variables of that set are relative to

4.8 F-tests

Now that we’re in multiple regression, we might want to run joint hypotheses. That is, we
might concern ourselves with a hypothesis with multiple restrictions. Take, for example, the
following regression and an associated hypothesis test:

yi = α + β1x1i + β2x2i + β3x3i + εi i = 1, . . . , n

H0 : β1 = 0 and β2 = 0

H1 : β1 6= 0 or β2 6= 0 (or both).

Notice that we are estimating 4 parameters and we have q = 2 restrictions in the hypoth-
esis. To do an F-test, we calculate the F-statistic and compare it to the appropriate critical
value (usually obtained from a table). Rule: reject if F̂ > Fc.v..

F =
(SSR∗ − SSR)/q

SSR/(n− k)
∼ Fq,n−k

where SSR∗ is the sum of squared residuals under the restricted regression, q is the numerator
degrees of freedom (number of restrictions), and n−k is the denominator degrees of freedom.

4.9 Interaction Terms

The next important type of variable that we often concern ourselves with are interaction
terms. Simply put, they are just new variables that are created (generated) by multiplying
two other variables together. For example, consider the variables FEi and Blacki, the latter
being a dummy variable indicating if someone is black or not black. Our model might be

ln(wagei) = α + βFEi + γBlacki + δFEi ×Blacki + εi.
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How are these coefficients interpreted?

Men Women Difference

non-Black α α + β β
Black α + γ α + β + γ + δ β + δ

Difference γ γ + δ δ

• α: the expected log wage of a non-black male

• β: the difference in wages between men and women who are non-black

• γ: the difference in wages between black and non-black men

• δ: the difference in wages of men and women who are black OR the difference in wages
of black and non-black people who are women (difference in differences coefficient)

We will see another example of interaction terms when we discuss the Difference-in-
Differences Model.

5 Violations of Classic Assumptions

Now we are going to start “breaking” the classic OLS assumptions. Not only can breaking
some of these assumptions lead to biased estimates, but we would also ideally like to make
use of Gauss-Markov Theorem (which, recall, states that OLS is BLUE if certain of those
assumptions hold). This part of the class can get confusing as it is very easy to get bogged
down in the math of it all, so here is a little table to fix “big picture” ideas.

Issue Broken Assumption Solution(s)

Misspecification A2 Fixed Effects
Heteroskedasticity A4 part 1 GLS or Huber-White SEs
Autocorrelation A4 part 2 GLS or HAC SEs

5.1 Misspecification

Now we are going to start “breaking” the classic OLS assumptions. The first thing we are
going to look at is really an implicit assumption, but we can think of it as breaking A2 (xi
is nonrandom). Assume that the DGP is y = βx + ε. Further, remember from before that

we can rewrite β̂ as follows (using some of the other assumptions)

β̂ =

∑
yx∑
x2

= β +

∑
εx∑
x2

= β +
1
n

∑
εx

1
n

∑
x2
≈ β +

cov(x, ε)

var(x)
.
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If cov(x, ε) 6= 0, then β̂ will be biased in the direction of the sign of cov(·). Recall, under
A2, that this is automatically 0 (x doesn’t covary with anything!). Indeed, this assumption
is just to make some arithmetic easier, the real A2 should be that the covariance is zero. So,
when is the covariance not equal to zero? Intuitively, if there is something left out of the
regression (i.e. in the error term) that is related to x and determines y (omitted variable bias).

Let’s say we are concerned with the effect of class size on student test scores. In particu-
lar let’s assume that the real DGP (that is all of the classic assumptions hold for it) is given by

scoreit = βsizeit + δteacherqualityi + εit i = 1, . . . , n t = 1, . . . , T.

Notice the indexes (there are two). We have observations of individual classrooms (i) over
time (t). We call this sort of data structure panel data. When we just have observations
over i we call that cross-sectional data, and if we have observations over t we call that time-
series data. In any regard, with our panel structure, notice that teacher quality doesn’t vary
over time (we might think that a particular teacher in classroom i doesn’t improve over time).

Unfortunately, we don’t observe teacherqualityi, so we run the regression:

scoreit = γsizeit + uit,

where the coefficient of interest is called something else because we don’t (at least right now)
know if the above regression will give us the right value for the effect of class size (we want
γ = β). Further, the error term uit is named differently because teacherqualityi is now in
the error term (this is all just notation). Now we want to see if our estimator for the effect
of class size is biased. Assume that better teachers are assigned to smaller classes (this will
be important). Running the pooled regression (we won’t have to worry about the double
indexes) . . .

E[γ̂] = E
[∑

size ∗ score∑
size2

]
= E

[∑
size ∗ (βsize+ δteacherquality + ε)∑

size2

]
(plugging in the true DGP: A1)

= E
[
β + δ

∑
size ∗ teacherquality∑

size2
+

∑
size ∗ ε∑
size2

]
= β + δE

[∑
size ∗ teacherquality∑

size2

]
+ 0. (A2 and A3)

= β + δλ̂ (the way Thiel writes it)

The two conditions that are necessary for omitted variable bias are:
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1. δ 6= 0 ⇐⇒ cov(zi, yi) 6= 0

2. λ̂ 6= 0 ⇐⇒ cov(zi, xi) 6= 0

If these two conditions are met this implies cov(xi, εi) 6= 0 which leads to bias.

Thus our estimator for the effect of size, γ̂, will be unbiased if that second term is equal
to zero (the truth is β). Note that the messy part of the second term looks like the OLS
estimator for a regression of teacher quality on class size, teacherqualityit = λsizeit + vit,
which is where λ comes from. Since we know that cov(size, teacherquality) < 0 (i.e. λ̂ will
be negative) and intuit that δ is positive (better teachers yield higher test scores), we can
be pretty sure that our estimator will be biased downward.

5.2 Fixed Effects

One way of fixing the problem from before is to use fixed effects. These work if the omitted
(unobserved) effects only vary across one dimension (e.g. observation or time). To continue
on with our earlier example, we would want to add “entity” or observation fixed effects to
help control for the unobserved teacher quality. Our regression will then look like

scoreit = βsizeit + δi + εit,

where δi are the observation fixed effects. In order to implement this in practice, we would
simply include dummy variables for all of the observations. That is, we would create a
dummy variable for each observation (e.g. D1 equals 1 if it’s observation 1 and 0 if it’s
observation 2− n). We could rewrite this as

scoreit = βsizeit + δ1D1 + · · ·+ δnDn + εit.

Intuitively, these dummies will capture all of the effects of each individual that are not ex-
plained by the included variables (class size for us). We won’t interpret the δs because they
will capture more than just teacher quality. They are simply used to “clean up” the error
term.

Suppose we also thought there were unobserved things that varied only over time (but
not across observation), like general economic conditions (recession, boom, etc.), that we
thought were important that we didn’t observe. We could also add in time fixed effects
(which we could implement by adding in dummies for each year).

scoreit = βsizeit + δi + ηt + εit
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5.3 Difference-in-Differences

You need data with variation over time.

• Repeated cross-section – observe the same group but different individuals over time

• Panel Data – observe the same individual over time

A diff-in-diff framework is a useful tool for policy analysis. We use a control group as a
counterfactual to the treatment group.

Yit = α + β1 ∗ Afterit + β2 ∗ Treatedit + β3 ∗ Afterit ∗ Treatedit + εit

E[Yit|] Treated Control Difference

After α + β1 + β2 + β3 α + β1 β2 + β3
Before α + β2 α β2
Difference β1 + β3 β1 β3

TimeBefore After

Yit

α̂

Control

Treatment

Treatment Counterfactual

β̂1

β̂2

β̂3

Underlying Assumptions:

• Parallel (Common) trends assumption – treatment group would be on the same trend
as control if policy/intervention did not happen

• No other contemporaneous shocks to treatment group aside from treatment

• Policy change as good as random
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5.4 Heteroskedasticity

The next assumption we will break is part 1 of A4, which states that the variance of the er-
ror term for each observation is the same (homoskedasticity). Indeed, there is no intuitively
good reason to believe this, so we’ll relax that now. That is, we will amend that part of
assumption 4 to read: var(εi) = σ2

i (notice the index). Again, this is problematic because
Gauss-Markov will no longer hold. The first solution I will mention is what is normally done
in actual research. The second solution to this problem is fairly straightforward, and what
you’d most likely be tested on. What you should know is that if there is heteroskedasticity,
and you treat the problem like you have homoskedasticity, the SEs that you obtain will be
artificially low and you will reject hypotheses too frequently (which is not good, it’s better
to be conservative in this regard).

Because the first solution is fairly anticlimactic, it doesn’t get it’s own section. Know-
ing that the SEs are wrong if we assume homoskedasticity when there is heteroskedasticity,
we can use a different standard error formula to correct for that. This particular formula
(which you don’t need to know, just be aware of it) are called Huber-White “heteroskedastic-
ity robust” SEs. Henceforth you should always correct for heteroskedasticity on homework
assignments / projects (there is a way to change the SEs in Eviews).

5.5 Generalized Least Squares (GLS)

When we do GLS, what we are doing is transforming our original, problematic, regression
with heteroskedasticity into one with homoskedasticity (which we already know how to work
with). To do the transformation, we will weight each observation by something (call it wi)
that will make the variance of that observation’s error the same for everyone. Intuitively,
we will put less weight on observations with high variance, and more weight on observations
with low variance (we prefer to be more accurate). Once we figure out the weights, we plug
that into the transformed regression and then run OLS on that transformation:

wiyi = βwixi + wiεi =⇒ β̂GLS =

∑
w2
i xiyi∑
w2
i x

2
i

ỹi = βx̃i + ε̃i.

We are not done, though, we need to actually figure out what wi will be. For each ques-
tion you might get, there will be a different weight that you use that depends on the structure
of the variance for your problem. I will go through an example here. Suppose we thought
that the variance of the error term was var(εi) = xiσ

2. We want to find a weight wi that we
multiply our observations by such that we remove anything that has an i index on it. That is
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var(wiεi) = σ2

w2
i var(εi) = σ2

w2
i =

σ2

xiσ2

wi =
1
√
xi

And so by plugging in we can get our transformed regression and the GLS estimator:

yi√
xi

= β
√
xi +

εi√
xi

=⇒ β̂GLS =

∑
yi∑
xi
. (they don’t always come out this clean)

What happens when part 2 of A4 breaks (that is, when the covariance of different error
terms is not zero). This topic is called serial correlation (sometimes autocorrelation) and is
of particular (though not exclusive) interest when looking at time series data (i.e. we only
have 1 “observation” but witness it over time). As an extension, we will get a glimpse of
some very important time series topics, namely forecasting.

5.6 Serial Correlation

First, in time series, a typical regression might look like

yt = α + β1yt−1 + · · ·+ βmyt−m + γ1xt−1 + · · ·+ γnxt−n + εt,

where (interestingly) we can have lags of the left-hand variable on the right side! Consider,
for simplicity, the simple case with just one lag of the dependent variable for just a moment:
yt = α+ βyt−1 + εt. Because yt is a function of yt−1, yt will also be a function of εt−1. That
is, we should have a strong concern about A4:

A4 : V ar(εi) = E[ε2i ] = σ2 i = 1, . . . , n (“homoskedastic”)

Cov(εi, εj) = E[εiεj] = 0 ∀i 6= j. (“no correlation”)

Having a lag of the dependent variable on the RHS isn’t necessary for this, though. In
general, when thinking about variables (like GDP) over time, we generally think that there
are important things that we can’t observe (in the error term) that are related over time. We
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call this serial correlation. This is a problem because Gauss-Markov (which requires there
to be no covariance) will no longer hold. If we think back from before (in the derivation of
the variance of the OLS estimator), one of the steps involved invoking A4 to eliminate all of
the covariance terms. When we break this assumption, however, we can’t do that.

Moving forward, how will we fix this? Indeed, we’ll use another GLS procedure (be-
fore when doing “GLS” we were performing the “WLS” procedure to fix heteroskedasticity)
called Cochrane-Orcutt. Here, we’ll transform the DGP such that the no serial correlation
assumption is once again satisfied. Just like with WLS and the variance of the error terms,
in order to do this we’ll need to make an assumption about the structure of the serial de-
pendence. A common assumption (one that we’ll work with) is that the error term follows
a “first-order autoregressive process” (AR(1)). Consider the following.

yt = βxt−1 + εt where εt = ρεt−1 + vt where |ρ| < 1

We will assume that εt = ρεt−1+vt follows all of the usual (classic) assumptions: E[vt] = 0,
V ar(vt) = σ2

v ∀t, and cov(vt, vs) = 0 ∀t 6= s. You might see this assumption written as vt
being independently and identically distributed (iid), which is a stronger assumption than
what we usually need, but it implies the above. Intuitively, what we’ll want to do is get
the regression written in such a way so that vt is the only error term. We can do this by
quasi-differencing (to take a difference means to subtract one thing from another; to quasi-
difference essentially means to subtract a scaled thing from another). To continue with the
earlier example (of only one lagged dependent variable on the RHS), notice that we can write:

yt = βxt + εt

yt−1 = βxt−1 + εt−1

ρyt−1 = βρxt−1 + ρεt−1

Everything above is just a manipulation. Recalling the structure of the error term from
before, what we want to do is get the ρεt−1 out of εt so that we are left with vt. To do
this, simply subtract the third equation from the first equation above to get the transformed
DGP. To get the Cochrane-Orcutt estimator (again, which is a type of GLS estimator), we
will simply run OLS on the transformed regression.

yt − ρyt−1︸ ︷︷ ︸
new y variable

= β (xt − ρxt−1)︸ ︷︷ ︸
new x variable

+ εt − ρεt−1︸ ︷︷ ︸
vt

(“quasi-difference”)

=⇒ β̂CO =

∑
(yt − ρyt−1)(xt − ρxt−1)∑

(xt − ρxt−1)2
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In practice, however, we’ll need to get an estimate for ρ, ρ̂. To do this, what we could do
is to follow these steps:

1. Run the original regression (yt = βxt + εt) and save the residuals

2. Run the regression et = ρet−1 + ηt to obtain ρ̂

3. Then use that to get (and run) the transformed regression: yt−ρ̂yt−1 = β(xt−ρ̂xt−1)+vt

Eviews also provides a shortcut. Remember that we assumed that the error followed an
AR(1) process? Well, we can simply include that in a least squares regression and it will do
all of the work for us!

ls y c x AR(1)

Note that we could also include AR(2), AR(3), . . . and so on if we thought that the error
term had some correlation with more than one period prior.

5.7 Examples

Fall 2015, Final, Question 4. You are interested in estimating Yt = c + βXt + εt. You
find evidence of serial correlation of the AR(1) type such that

εt = ρεt−1 + ηt

(a) Suppose that ρ = 0.9 and that E[ηtηs] =

{
1 if t = s
0 if t 6= s

i. What is the correlation between εt and εt−1? 0.9

ii. What is the correlation between εt and εt−4? 0.6561

(b) Suppose that ρ = 0.4 and that E[ηtηs] =

{
1 if t = s
0 if t 6= s

i. What is the correlation between εt and εt−1? 0.4

ii. What is the correlation between εt and εt−4? 0.0256
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Solution Method:

corr[εt, εt−1] = corr[ρεt−1 + ηt, εt−1]

= corr[ρεt−1, εt−1] + corr[ηt, εt−1]

= ρcorr[εt−1, εt−1] + corr[ηt, εt−1]

= ρ(1) + 0 = ρ

corr[εt, εt−4] = corr[ρεt−1 + ηt, εt−4]

= corr[ρ(ρεt−2 + ηt−1) + ηt, εt−4]

= corr[ρ(ρ(ρεt−3 + ηt−2) + ηt−1) + ηt, εt−4]

= corr[ρ(ρ(ρ(ρεt−4 + ηt−3) + ηt−2) + ηt−1) + ηt, εt−4]

= ρ4corr[εt−4, εt−4] + ρ3corr[ηt−3, εt−4] + · · ·+ corr[ηt, εt−4]

= ρ4(1) + 0 + · · ·+ 0 = ρ4

(c) Comment on and explain the reason for the difference between the answers for (a) and (b).

Answer: In part (a), the errors are highly correlated. As a result, the relationship between
the errors over time is higher whereas in part (b), the correlation between errors is practically
0 after 4 periods.

(d) You have typed in “ls y c x” in Eviews. Which of the following is true about your
regression output?

1. Your estimate of β is biased.

2. Your confidence intervals are valid.

3. Your standard errors are incorrect. (?)

4. Your p-values are valid.

(e) When you include the AR(1) term, will the t-statistics change more (compared to their
values from part (d)) in the case of ρ = 0.9 or ρ = 0.4? Why?

Answer: The t-statistics will change more when ρ = 0.9 because they are more highly corre-
lated over time (and so will need to be corrected “more”).
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6 Hypothesis Testing

After estimating a parameter, we wish to know how close the population value is likely to
be to an estimate. A common test we wish to perform is whether a regression coefficient is
equal to zero or not equal to zero. First we set up the null and alternative hypothesis.

H0 : β1 = 0

H1 : β1 6= 0

Next, construct the test statistic

t̂ =
β̂1 − βH0

SE(β̂1)

Now we compare t̂ to a critical value obtained from a t or z distribution. Finally, we
either reject or fail to reject the null hypothesis. If |t̂| > c.v. we reject the null hypothesis and
conclude that there is evidence to suggest β1 is significantly different than zero. If |t̂| < c.v.
we fail to reject the null hypothesis and conclude that there is not evidence to suggest β1 is
significantly different than zero.
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We can also test a hypothesis by constructing a confidence interval.

P

(
−c.v. ≤ β̂ − β

SE(β̂)
≤ c.v.

)
= 1− α

P
(
−c.v. ∗ SE(β̂) ≤ β̂ − β ≤ c.v. ∗ SE(β̂)

)
= 1− α

P
(
β̂ − c.v. ∗ SE(β̂) ≤ β ≤ β̂ + c.v. ∗ SE(β̂)

)
= 1− α

=⇒ β ∈ [β̂ − SE(β̂) ∗ c.v., β̂ + SE(β̂) ∗ c.v.]

6.1 Example

Hypothesis test of a difference of means. Let’s say we were concerned about testing
whether men and women have the same mean yearly incomes at the 5% level. In particular,
we found that

xM = 4.5 nM = 12 σ2
M = 1

xF = 3.4 nF = 15 σ2
F = 1.5

where incomes are measured in thousands of dollars per pay period (2 weeks). Assume that
the mean income for men and women are independent.

Answer: To answer this, we can use my 4 step procedure to answer hypothesis tests.

1. The null and alternative hypotheses will be given by the following. To test the hypothesis,
we will use a difference of sample averages as our estimator.

H0 : µM = µF vs. H1 : µM 6= µF

⇐⇒ H0 : µM − µF = 0 vs. H1 : µM − µF 6= 0

2. Our test statistic will be slightly different than what we’re used to. Recall that, generally,
we have (note that, for this problem, β̂ = xM − xF )

t̂ =
β̂ − βH0

SE(β̂)
=

(xM − xF )− (µM − µF )√
(σ2

M/nM) + (σ2
F/nF )

=
(4.5− 3.4)− 0√
(1/12) + (1.5/15)

=
1.1

.4282
= 2.57
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3. We are told to test it at the 5% level. The critical value we will want to use is ±2.06.

4. Because the calculated test statistic falls in the rejection region, we reject the null hy-
pothesis at the 5% level of significance. There is evidence to suggest that the mean incomes
of men and women differ.

6.2 R-squared

R-squared is a statistical measure of how close the data are to the fitted regression line.
R-squared = Explained variation

Total variation

R-squared is always between 0 and 100%:

• 0% indicates that the model explains none of the variability of the response data around
its mean.

• 100% indicates that the model explains all the variability of the response data around
its mean.

7 Instrument Variables

One method to deal with the problem of endogenity (Cov(xi, εi) 6= 0) is an Instrument
Variable approach.

What we need for an instrument variable:

• An “exogenous” factor (something outside the model) that shifts xi in such a way that
εi is not affected.

• Alternatively, something randomly determined that affects xi

Suppose we have the following model

yi = β0 + β1xi + β2wi + εi,

and we are concerned that xi and εi are correlated (i.e. xi is endogenous). We can use
an instrument variable zi to “instrument” for xi. There are two conditions that must be met
for a variable, zi, to be a valid instrument.

1. Cov(xi, zi) 6= 0 (The instrument is relevant or the first stage exists)

2. Cov(zi, εi) = 0 (exclusion restriction)

The exclusion restriction can be thought of another way. The instrument, zi, does not
directly influence the dependent variable, yi, its only affect is indirectly through xi.

xizi yi

εi

32



7.1 Two Staged Least Squares

Casual Relationship of interest:

yi = β0 + β1xi + β2wi + εi,

First Stage:
xi = α0 + α1zi + α2wi + ui,

Predicted First Stage:
x̂i = α̂0 + α̂1zi + α̂2wi

Second Stage:

yi = β0 + β1x̂i + β2wi + β1ui + εi,

Note: xi = x̂i + ui.
You need at least as many instruments as endogenous right hand side variables in equation

being estimated. In practice it is often difficult to find convincing instruments (in particular
because many potential IVs do not satisfy the exclusion restriction). An example of a
paper utilizing IV is “Children and their Parents’ Labor Supply: Evidence from Exogenous
Variation in Family Size” by Joshua Angrist and William Evans, American Economic Review,
1996. It turns out, parents typically have strong preferences for mixed-gender children. What
this means is that parents of two same-sex children are more likely to have a third child than
parents of mixed-sex children (about 6 percentage points more likely). Instrument, zi, is a
dummy indicating first two children are the same sex. We can only look at parents with at
least 2 children, instrument shifts the probability of having a third child. yi is labor supply
and xi is the number of children. Two stage least squares results show that a third child
reduces hours per week by 4.5 hours.

8 Linear Probability Model

You need data with a binary dependent variable

Yi = {0, 1}
Binary outcome examples:

• Accepted/Rejected

• Win/Lose

• Mortality

Yi = β0 + β1Xi + εi

Interpreting the β1 coefficient. Increasing Xi by one changes the probability of the out-
come equaling 1 by β1 percentage points, holding everything else constant. A predicted value
Ŷ is the predicted probability that the dependent variable equals one, given X.
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Xi

Yi

1

-1

0

LPM
Probit

Using the Probit or Logit model forces an s-curve on the prediction.

Si = β0 + β1Xi + εi

P(yi = 1|Xi) = F (Si)

F (·) is the cumulative distribution function for some probability distributions. CDFs have
an S-shape and can only take values between zero and one.

• F (·) normal gives probit model

• F (·) logistic gives logit model

No matter how high the “score” is, the predicted probability can never be > 1 and no matter
how low the “score” is, the predicted probability can never be < 0.

Probit and logit have nonlinear marginal effects. A coefficient is the change in probability
due to a one-unit increase in a given X variable, BUT depends on both the values of other
X’s and the starting value of the given X. Yields unintuitive coefficients in regression output;
we will focus on SIGN and relative size of coefficients with a probit/logit regression.
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