
INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

Introduction to R

Daniel Cullen
Department of Economics

University of California, Santa Barbara

September 25, 2018

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

INTRODUCTION

INTRODUCTION

R Basics

Data Types

Loops

Functions

Working with Data Frames

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

LEARNING OBJECTIVES

I Become familiar with RStudio

I Understand R syntax and data structures

I Visualize and summarize data using R

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

R AND RSTUDIO

What is R?
R is a programming language for statistical computing and
graphics. R is effective at handling data, performing data
analysis, and creating visuals to summarize data.

What is RStudio?
RStudio is an open-source Integrated Development
Environment (IDE). Rstudio provides an environment to make
using R easier.

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

RSTUDIO

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

RSTUDIO

The interface of R Studio is split into four parts

I R Console: This area shows the output of code you run
and you can directly write codes in the console.

I R Script: The space to write code and save to file. To run
this code, select the lines of code and press Ctrl + Enter or
click on the Run button at the top right corner of R Script.

I R environment: Displays the set of external elements
added, including data, variables, functions, etc.

I Files/Plots/Packages/Viewer: Display the graphs created
during data analysis.

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

ORGANIZING YOUR WORKING DIRECTORY

Check current working directory:

getwd()

Change working directory:

setwd("directory")

To organize your working directory for a particular analysis,
you should separate the original data (raw data) from produced
datasets. For instance, you may want to create a raw_data/
directory within your working directory that stores the raw
data, and have a produced_data/ directory for intermediate
datasets and a figures/ directory for the plots you generate.

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

USING R

There are two main ways of interacting with R in RStudio using
the console or using the script editor. Best practice is to use the
script editor and save the script so you have a record of the
commands you ran and can reproduce the output. It is also
recommended to thoroughly comment the code using # .

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

PACKAGES

To install a package type:

install.packages("package name")

To load package type:

library("package name")

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

ASSIGNMENT OPERATOR

To assign values to variables use the assignment operator, <- .
We can assign the value of 5 to x by typing:

x <- 5

We can create another variable, y , and set it equal to 2

y <- 2

Then we can create a third variable, z , and set it equal to the
sum of x and y

z <- x + y

We can see the result by typing z in the console:

>z
[1] 7

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

DATA TYPES

R contains six data types:
I numeric : for any numeric value
I character : for text values
I integer : for integer numbers

I logical : for TRUE and FALSE

I complex : for complex numbers with real and imaginary
parts

I raw : holds raw bytes as hex digits

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

DATA STRUCTURES

Common data structures in R are:
I Vectors c() : an ordered list of R objects, indexed by an

integer beginning at 1
I Factors factor : similar to a vector but each element is

categorical (set number of levels)
I Matrix matrix : similar to a vector but indexed by two

integers
I Arrays array : similar to a matrix but can have more

than two dimensions
I Lists list : similar to a vector, but elements do not need

to be the same type
I Data Frames data.frame : like a matrix but does not

assume all columns have the same type

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

VECTORS

A vector is a ordered collection of values of the same data type.
You can create a vector using the c() function which
concatenates elements.

> c(1, 2, 3, 4, 5)
[1] 1 2 3 4 5
> c("a", "b", "c", "d", "e")
[1] "a" "b" "c" "d" "e"
> c(T, T, F, F, T)
[1] TRUE TRUE FALSE FALSE TRUE

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

VECTORS

You can create a vector of a sequence using the : symbol or
the seq() function

> 1:5
[1] 1 2 3 4 5
> 5:1
[1] 5 4 3 2 1
> seq(1, 5)
[1] 1 2 3 4 5
> seq(1, 5, by = 0.5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

FACTORS
factor() transforms a vector into a factor. A factor can also

be ordered with the option ordered = T or the function
ordered() .

> factor(c("yes", "no", "undecided", "no",
"yes", "undecided", "no"))

[1] yes no undecided no yes undecided no
Levels: no undecided yes
> factor(c("yes", "no", "undecided", "no",

"yes", "undecided", "no"), ordered = T)
[1] yes no undecided no yes undecided no
Levels: no < undecided < yes
> ordered(c("yes", "no", "undecided", "no",

"yes", "undecided", "no"))
[1] yes no undecided no yes undecided no
Levels: no < undecided < yes

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

MATRIX

matrix() creates a matrix of data in which you enter a
vector of data, the number of rows and/or columns and you
can specify if you want R to read your vector by row or by
column (the default option).

> matrix(data = NA, nrow = 5, ncol = 5, byrow
= T)
[,1] [,2] [,3] [,4] [,5]

[1,] NA NA NA NA NA
[2,] NA NA NA NA NA
[3,] NA NA NA NA NA
[4,] NA NA NA NA NA
[5,] NA NA NA NA NA

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

MATRIX

matrix() creates a matrix of data in which you enter a
vector of data, the number of rows and/or columns and you
can specify if you want R to read your vector by row or by
column (the default option).

> matrix(data = 1:15, nrow = 5, ncol = 5,
byrow = T)
[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
[3,] 11 12 13 14 15
[4,] 1 2 3 4 5
[5,] 6 7 8 9 10

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

MATRIX

matrix() creates a matrix of data in which you enter a
vector of data, the number of rows and/or columns and you
can specify if you want R to read your vector by row or by
column (the default option).

> matrix(data = 1:15, nrow = 5, ncol = 5,
byrow = F)
[,1] [,2] [,3] [,4] [,5]

[1,] 1 6 11 1 6
[2,] 2 7 12 2 7
[3,] 3 8 13 3 8
[4,] 4 9 14 4 9
[5,] 5 10 15 5 10

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

MATRIX
cbind() and rbind() combine vectors into matrices

column by column or row by row :

> v1 <- 1:4
> v2 <- 4:1
> v2
[1] 4 3 2 1
> cbind(v1,v2)

v1 v2
[1,] 1 4
[2,] 2 3
[3,] 3 2
[4,] 4 1
> rbind(v1,v2)

[,1] [,2] [,3] [,4]
v1 1 2 3 4
v2 4 3 2 1

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

ARRAYS

An array is composed of n dimensions where each dimension is
a vector of R objects of the same type.
z <- array(1:27, dim = c(3, 3, 3))
> z
, , 1

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

, , 2

[,1] [,2] [,3]
[1,] 10 13 16
[2,] 11 14 17
[3,] 12 15 18

, , 3

[,1] [,2] [,3]
[1,] 19 22 25
[2,] 20 23 26
[3,] 21 24 27

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

ARRAYS
R arrays are accessed by integer index. The third dimension of a 3 by
3 array is:

> z[,,3]
[,1] [,2] [,3]
[1,] 19 22 25
[2,] 20 23 26
[3,] 21 24 27

Specifying two of the three dimensions returns an array on one
dimension.

> z[,3,3]
[1] 25 26 27

Specifying three of three dimension returns an element of the 3 by 3
by 3 array.

> z[3,3,3]
[1] 27

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

LISTS
A list is a collection of R objects. list() creates a list. unlist()
transform a list into a vector. The objects in a list do not have to be of
the same type or length.

> x <- c(1:4)
> y <- FALSE
> z <- matrix(c(1:4),nrow=2,ncol=2)
> myList <- list(x,y,z)
> myList
[[1]]

[1] 1 2 3 4

[[2]]
[1] FALSE

[[3]]
[,1] [,2]

[1,] 1 2
[2,] 3 4

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

DATA FRAMES

A dataframe is a list of variables/vectors of the same length.

> v1 <- 1:5
> v2 <- c(T, T, F, F, T)
> df <- data.frame(v1, v2)
> print(df)
v1 v2

1 1 TRUE
2 2 TRUE
3 3 FALSE
4 4 FALSE
5 5 TRUE

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

FOR LOOPS

For loops allow us to repeat an action multiple times. For
example we can print the square of every number from 1 to 5:

for (i in 1:5){
print(iˆ2)

}

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

FOR LOOPS

We can also put the results of our loop in a list. First we create a
vector of zeros, then we fill in with values

n <- 5
x <- rep(0,n)
for (i in 1:n){
x[i] <- iˆ2

}

>print(x)
[1] 1 4 9 16 25

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

FOR LOOPS

We can use a loop to find the expected value of rolling a die
1000 times.

nsides <- 6
ntrials <- 1000
trials <- rep(0, ntrials)
for (i in 1:ntrials){
trials[i] <- sample(1:nsides, 1)

}

> mean(trials)
[1] 3.496

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

FUNCTIONS

Functions are a key feature in R. They are sections of code that
take input, process it, and return a results.
A function consists of the name of the function followed by
parentheses:

function_name(input)

The input are called arguments. The arguments are either
objects on which the function performs a task or options that
alter the function.

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

BASIC FUNCTIONS

We have already seen some basic function. getwd() is a
function to display the current working directory and takes no
arguments. We also used the c() function to combine data
into vectors. The arguments c() takes are a collection of
numbers, characters, or strings. You can also use the function to
add elements to an existing vector.

> country <- c("Canada", "United States",
"Mexico")

> country <- c(country, "France")
> country
[1] "Canada" "United States" "Mexico" "France"

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

FUNCTION HELP

To find information about a function use the ? followed by the
name of the function. This will open the help manual in the
bottom right panel of R studio that provides a description of
the function and its arguments.

> ?c

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

USER-DEFINED FUNCTIONS

Functions are a useful tool when there is a task you need to
repeat multiple times.

function_name <- function(argument1, argument2) {
Code that does something
return(something)

}

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

USER-DEFINED FUNCTION EXAMPLE

Create a function to find the square of a number.

squared <- function(x) {
square <- x * x
return(square)

}

Now we can use our created function to find the square of any
number

> squared(5)
[1] 25
> squared(13)
[1] 169

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

LOADING DATA

R can import data of various file types. A common file type for
data is a comma-separated values (.csv) file. To import a csv
file and assign it to a data frame named df type

df <- read.csv("cps_2016.csv")

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

VIEWING DATA

There are various ways to inspect a data frame, such as:

I str(df) gives a very brief description of the data

I names(df) gives the name of each variables

I summary(df) gives some very basic summary statistics
for each variable

I head(df) shows the first few rows

I tail(df) shows the last few rows.

View(df)
head(df, n = 20) # n = 20 prints the first 20

lines in the R console

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

VIEWING DATA
Other useful functions to inspect a data frame:
I length(df) gives number of variables
I length(df$var) gives number of observations for a

variable, var
I dim(df) gives the dimensions of the data frame
I nrow(df) gives some very basic summary statistics for

each variable
I ncol(df) shows the first few rows

> # View dimensions of data
> length(df)
[1] 13
> length(df$incwage)
[1] 185487
> dim(df)
[1] 185487 13

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

ROW AND COLUMN BIND

A row or column can be added to a data frame using the
rbind or cbind commands.

mydata <- cbind(mydata, myVector)
mydata <- rbind(mydata, myVector)

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

CREATING AND REMOVING VARIABLES

A new variable can be added to a data frame

mydata$newVar <- oldvar

A variable can be deleted from a dataset by assigning NULL to
the variable

mydata$x <- NULL

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

RENAMING VARIABLES

To rename a variable you must redefine the vector of names in
a data frame

df <- data.frame(x = 1:10, y = 11:20)

> names(df)
[1] "x" "y"

names(df) <- c("Var1", "Var2")

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

SUBSETTING DATA

The subset command is used to create a subset of a data
frame. The first argument is the name of the dataset, the second
argument is a logical condition which says what to include in
the new dataset, and the last argument is the list of variable
which will be included in the new dataset.

N <- 100
x1 <- rnorm(N)
x2 <- 1 + rnorm(N) + x1
x3 <- rnorm(N) + x2
mydat <- data.frame(x1, x2, x3)
subset(x = mydat, subset = x1 > 0 & x2 < 0,

select = c(x1, x2))

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

RESHAPING DATA

The reshape() command reshapes a dataset in a wide or
long format.
> country <- c("Canada", "United States", "Mexico")
> gdp_2000 <- c(1, 2, 3)
> gdp_2010 <- c(2, 4, 6)
> gdp_data <- data.frame(country, gdp_2000, gdp_2010)
> gdp_data # wide format

country gdp_2000 gdp_2010
1 Canada 1 2
2 United States 2 4
3 Mexico 3 6
>
> # long format
> gdp_long <- reshape(data = gdp_data, varying = list(2:3) , v.names = "gdp",

direction = "long")
> gdp_long

country time gdp id
1.1 Canada 1 1 1
2.1 United States 1 2 2
3.1 Mexico 1 3 3
1.2 Canada 2 2 1
2.2 United States 2 4 2
3.2 Mexico 2 6 3

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

MERGING DATA

The merge() command can be used to combine two data
frames.
> capitals <- data.frame(country = c("Canada", "United States", "Mexico"),
+ capital = c("Ottawa", "Washington DC", "Mexico City"))
> capitals

country capital
1 Canada Ottawa
2 United States Washington DC
3 Mexico Mexico City
> leaders <- data.frame(country = c("Canada", "United States", "Mexico"),
+ leader = c("Justin Trudeau", "Donald Trump", "Enrique Pena

Nieto"))
> leaders

country leader
1 Canada Justin Trudeau
2 United States Donald Trump
3 Mexico Enrique Pena Nieto
> final <- merge(capitals, leaders, by = "country")
> final

country capital leader
1 Canada Ottawa Justin Trudeau
2 Mexico Mexico City Enrique Pena Nieto
3 United States Washington DC Donald Trump

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

LOOKING FOR MISSING DATA

To view a histogram of a variable in your data frame use the
hist() command.

hist(df$incwage)

INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

REMOVING MISSING DATA

In the CPS data missing income data is coded as 9999999 we
can subset the data to exclude all observation with an income
equal to 9999999.

df1 <- subset(df,
subset = incwage !
= 9999999)

hist(df1$incwage)

	Introduction
	R Basics
	Data Types
	Loops
	Functions
	Working with Data Frames

