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LEARNING OBJECTIVES

I Become familiar with RStudio

I Understand R syntax and data structures

I Visualize and summarize data using R
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R AND RSTUDIO

What is R?
R is a programming language for statistical computing and
graphics. R is effective at handling data, performing data
analysis, and creating visuals to summarize data.

What is RStudio?
RStudio is an open-source Integrated Development
Environment (IDE). Rstudio provides an environment to make
using R easier.



INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

RSTUDIO
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RSTUDIO

The interface of R Studio is split into four parts

I R Console: This area shows the output of code you run
and you can directly write codes in the console.

I R Script: The space to write code and save to file. To run
this code, select the lines of code and press Ctrl + Enter or
click on the Run button at the top right corner of R Script.

I R environment: Displays the set of external elements
added, including data, variables, functions, etc.

I Files/Plots/Packages/Viewer: Display the graphs created
during data analysis.
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ORGANIZING YOUR WORKING DIRECTORY

Check current working directory:

getwd()

Change working directory:

setwd("directory")

To organize your working directory for a particular analysis,
you should separate the original data (raw data) from produced
datasets. For instance, you may want to create a raw_data/
directory within your working directory that stores the raw
data, and have a produced_data/ directory for intermediate
datasets and a figures/ directory for the plots you generate.
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USING R

There are two main ways of interacting with R in RStudio using
the console or using the script editor. Best practice is to use the
script editor and save the script so you have a record of the
commands you ran and can reproduce the output. It is also
recommended to thoroughly comment the code using # .
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PACKAGES

To install a package type:

install.packages("package name")

To load package type:

library("package name")
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ASSIGNMENT OPERATOR

To assign values to variables use the assignment operator, <- .
We can assign the value of 5 to x by typing:

x <- 5

We can create another variable, y , and set it equal to 2

y <- 2

Then we can create a third variable, z , and set it equal to the
sum of x and y

z <- x + y

We can see the result by typing z in the console:

>z
[1] 7
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DATA TYPES

R contains six data types:
I numeric : for any numeric value
I character : for text values
I integer : for integer numbers

I logical : for TRUE and FALSE

I complex : for complex numbers with real and imaginary
parts

I raw : holds raw bytes as hex digits
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DATA STRUCTURES

Common data structures in R are:
I Vectors c() : an ordered list of R objects, indexed by an

integer beginning at 1
I Factors factor : similar to a vector but each element is

categorical (set number of levels)
I Matrix matrix : similar to a vector but indexed by two

integers
I Arrays array : similar to a matrix but can have more

than two dimensions
I Lists list : similar to a vector, but elements do not need

to be the same type
I Data Frames data.frame : like a matrix but does not

assume all columns have the same type
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VECTORS

A vector is a ordered collection of values of the same data type.
You can create a vector using the c() function which
concatenates elements.

> c(1, 2, 3, 4, 5)
[1] 1 2 3 4 5
> c("a", "b", "c", "d", "e")
[1] "a" "b" "c" "d" "e"
> c(T, T, F, F, T)
[1] TRUE TRUE FALSE FALSE TRUE
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VECTORS

You can create a vector of a sequence using the : symbol or
the seq() function

> 1:5
[1] 1 2 3 4 5
> 5:1
[1] 5 4 3 2 1
> seq(1, 5)
[1] 1 2 3 4 5
> seq(1, 5, by = 0.5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
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FACTORS
factor() transforms a vector into a factor. A factor can also

be ordered with the option ordered = T or the function
ordered() .

> factor(c("yes", "no", "undecided", "no",
"yes", "undecided", "no"))

[1] yes no undecided no yes undecided no
Levels: no undecided yes
> factor(c("yes", "no", "undecided", "no",

"yes", "undecided", "no"), ordered = T)
[1] yes no undecided no yes undecided no
Levels: no < undecided < yes
> ordered(c("yes", "no", "undecided", "no",

"yes", "undecided", "no"))
[1] yes no undecided no yes undecided no
Levels: no < undecided < yes
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MATRIX

matrix() creates a matrix of data in which you enter a
vector of data, the number of rows and/or columns and you
can specify if you want R to read your vector by row or by
column (the default option).

> matrix(data = NA, nrow = 5, ncol = 5, byrow
= T)
[,1] [,2] [,3] [,4] [,5]

[1,] NA NA NA NA NA
[2,] NA NA NA NA NA
[3,] NA NA NA NA NA
[4,] NA NA NA NA NA
[5,] NA NA NA NA NA
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MATRIX

matrix() creates a matrix of data in which you enter a
vector of data, the number of rows and/or columns and you
can specify if you want R to read your vector by row or by
column (the default option).

> matrix(data = 1:15, nrow = 5, ncol = 5,
byrow = T)
[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
[3,] 11 12 13 14 15
[4,] 1 2 3 4 5
[5,] 6 7 8 9 10
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MATRIX

matrix() creates a matrix of data in which you enter a
vector of data, the number of rows and/or columns and you
can specify if you want R to read your vector by row or by
column (the default option).

> matrix(data = 1:15, nrow = 5, ncol = 5,
byrow = F)
[,1] [,2] [,3] [,4] [,5]

[1,] 1 6 11 1 6
[2,] 2 7 12 2 7
[3,] 3 8 13 3 8
[4,] 4 9 14 4 9
[5,] 5 10 15 5 10
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MATRIX
cbind() and rbind() combine vectors into matrices

column by column or row by row :

> v1 <- 1:4
> v2 <- 4:1
> v2
[1] 4 3 2 1
> cbind(v1,v2)

v1 v2
[1,] 1 4
[2,] 2 3
[3,] 3 2
[4,] 4 1
> rbind(v1,v2)

[,1] [,2] [,3] [,4]
v1 1 2 3 4
v2 4 3 2 1
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ARRAYS

An array is composed of n dimensions where each dimension is
a vector of R objects of the same type.
z <- array(1:27, dim = c(3, 3, 3))
> z
, , 1

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

, , 2

[,1] [,2] [,3]
[1,] 10 13 16
[2,] 11 14 17
[3,] 12 15 18

, , 3

[,1] [,2] [,3]
[1,] 19 22 25
[2,] 20 23 26
[3,] 21 24 27
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ARRAYS
R arrays are accessed by integer index. The third dimension of a 3 by
3 array is:

> z[,,3]
[,1] [,2] [,3]
[1,] 19 22 25
[2,] 20 23 26
[3,] 21 24 27

Specifying two of the three dimensions returns an array on one
dimension.

> z[,3,3]
[1] 25 26 27

Specifying three of three dimension returns an element of the 3 by 3
by 3 array.

> z[3,3,3]
[1] 27
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LISTS
A list is a collection of R objects. list() creates a list. unlist()
transform a list into a vector. The objects in a list do not have to be of
the same type or length.

> x <- c(1:4)
> y <- FALSE
> z <- matrix(c(1:4),nrow=2,ncol=2)
> myList <- list(x,y,z)
> myList
[[1]]

[1] 1 2 3 4

[[2]]
[1] FALSE

[[3]]
[,1] [,2]

[1,] 1 2
[2,] 3 4
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DATA FRAMES

A dataframe is a list of variables/vectors of the same length.

> v1 <- 1:5
> v2 <- c(T, T, F, F, T)
> df <- data.frame(v1, v2)
> print(df)
v1 v2

1 1 TRUE
2 2 TRUE
3 3 FALSE
4 4 FALSE
5 5 TRUE
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FOR LOOPS

For loops allow us to repeat an action multiple times. For
example we can print the square of every number from 1 to 5:

for (i in 1:5){
print(iˆ2)

}
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FOR LOOPS

We can also put the results of our loop in a list. First we create a
vector of zeros, then we fill in with values

n <- 5
x <- rep(0,n)
for (i in 1:n){
x[i] <- iˆ2

}

>print(x)
[1] 1 4 9 16 25
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FOR LOOPS

We can use a loop to find the expected value of rolling a die
1000 times.

nsides <- 6
ntrials <- 1000
trials <- rep(0, ntrials)
for (i in 1:ntrials){
trials[i] <- sample(1:nsides, 1)

}

> mean(trials)
[1] 3.496
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FUNCTIONS

Functions are a key feature in R. They are sections of code that
take input, process it, and return a results.
A function consists of the name of the function followed by
parentheses:

function_name(input)

The input are called arguments. The arguments are either
objects on which the function performs a task or options that
alter the function.
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BASIC FUNCTIONS

We have already seen some basic function. getwd() is a
function to display the current working directory and takes no
arguments. We also used the c() function to combine data
into vectors. The arguments c() takes are a collection of
numbers, characters, or strings. You can also use the function to
add elements to an existing vector.

> country <- c("Canada", "United States",
"Mexico")

> country <- c(country, "France")
> country
[1] "Canada" "United States" "Mexico" "France"
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FUNCTION HELP

To find information about a function use the ? followed by the
name of the function. This will open the help manual in the
bottom right panel of R studio that provides a description of
the function and its arguments.

> ?c
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USER-DEFINED FUNCTIONS

Functions are a useful tool when there is a task you need to
repeat multiple times.

function_name <- function(argument1, argument2) {
Code that does something
return(something)

}
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USER-DEFINED FUNCTION EXAMPLE

Create a function to find the square of a number.

squared <- function(x) {
square <- x * x
return(square)

}

Now we can use our created function to find the square of any
number

> squared(5)
[1] 25
> squared(13)
[1] 169
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LOADING DATA

R can import data of various file types. A common file type for
data is a comma-separated values ( .csv ) file. To import a csv
file and assign it to a data frame named df type

df <- read.csv("cps_2016.csv")
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VIEWING DATA

There are various ways to inspect a data frame, such as:

I str(df) gives a very brief description of the data

I names(df) gives the name of each variables

I summary(df) gives some very basic summary statistics
for each variable

I head(df) shows the first few rows

I tail(df) shows the last few rows.

View(df)
head(df, n = 20) # n = 20 prints the first 20

lines in the R console
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VIEWING DATA
Other useful functions to inspect a data frame:
I length(df) gives number of variables
I length(df$var) gives number of observations for a

variable, var
I dim(df) gives the dimensions of the data frame
I nrow(df) gives some very basic summary statistics for

each variable
I ncol(df) shows the first few rows

> # View dimensions of data
> length(df)
[1] 13
> length(df$incwage)
[1] 185487
> dim(df)
[1] 185487 13



INTRODUCTION R Basics Data Types Loops Functions Working with Data Frames

ROW AND COLUMN BIND

A row or column can be added to a data frame using the
rbind or cbind commands.

mydata <- cbind(mydata, myVector)
mydata <- rbind(mydata, myVector)
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CREATING AND REMOVING VARIABLES

A new variable can be added to a data frame

mydata$newVar <- oldvar

A variable can be deleted from a dataset by assigning NULL to
the variable

mydata$x <- NULL
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RENAMING VARIABLES

To rename a variable you must redefine the vector of names in
a data frame

df <- data.frame(x = 1:10, y = 11:20)

> names(df)
[1] "x" "y"

names(df) <- c("Var1", "Var2")
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SUBSETTING DATA

The subset command is used to create a subset of a data
frame. The first argument is the name of the dataset, the second
argument is a logical condition which says what to include in
the new dataset, and the last argument is the list of variable
which will be included in the new dataset.

N <- 100
x1 <- rnorm(N)
x2 <- 1 + rnorm(N) + x1
x3 <- rnorm(N) + x2
mydat <- data.frame(x1, x2, x3)
subset(x = mydat, subset = x1 > 0 & x2 < 0,

select = c(x1, x2))
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RESHAPING DATA

The reshape() command reshapes a dataset in a wide or
long format.
> country <- c("Canada", "United States", "Mexico")
> gdp_2000 <- c(1, 2, 3)
> gdp_2010 <- c(2, 4, 6)
> gdp_data <- data.frame(country, gdp_2000, gdp_2010)
> gdp_data # wide format

country gdp_2000 gdp_2010
1 Canada 1 2
2 United States 2 4
3 Mexico 3 6
>
> # long format
> gdp_long <- reshape(data = gdp_data, varying = list(2:3) , v.names = "gdp",

direction = "long")
> gdp_long

country time gdp id
1.1 Canada 1 1 1
2.1 United States 1 2 2
3.1 Mexico 1 3 3
1.2 Canada 2 2 1
2.2 United States 2 4 2
3.2 Mexico 2 6 3
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MERGING DATA

The merge() command can be used to combine two data
frames.
> capitals <- data.frame(country = c("Canada", "United States", "Mexico"),
+ capital = c("Ottawa", "Washington DC", "Mexico City"))
> capitals

country capital
1 Canada Ottawa
2 United States Washington DC
3 Mexico Mexico City
> leaders <- data.frame(country = c("Canada", "United States", "Mexico"),
+ leader = c("Justin Trudeau", "Donald Trump", "Enrique Pena

Nieto"))
> leaders

country leader
1 Canada Justin Trudeau
2 United States Donald Trump
3 Mexico Enrique Pena Nieto
> final <- merge(capitals, leaders, by = "country")
> final

country capital leader
1 Canada Ottawa Justin Trudeau
2 Mexico Mexico City Enrique Pena Nieto
3 United States Washington DC Donald Trump
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LOOKING FOR MISSING DATA

To view a histogram of a variable in your data frame use the
hist() command.

hist(df$incwage)
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REMOVING MISSING DATA

In the CPS data missing income data is coded as 9999999 we
can subset the data to exclude all observation with an income
equal to 9999999.

df1 <- subset(df,
subset = incwage !
= 9999999)

hist(df1$incwage)
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