The coefficients of an OLS regression of Y_i on a constant and X_i when X_i is binary. Assume that you have a sample with n units. Let Y_i denote the value of the variable y for unit i, and let X_i denote the value of the variable x for unit i. When you write "ls y c x", E-views computes $\widehat{\beta}_0$ and $\widehat{\beta}_1$, the coefficients of the constant and of X_i in the OLS regression of Y_i on a constant and X_i . It follows from a result you saw during the lectures that $$\widehat{\beta}_1 = \frac{\frac{1}{n} \sum_{i=1}^n (Y_i - \overline{Y})(X_i - \overline{X})}{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2}$$ $$\widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \overline{X},$$ where \overline{Y} denotes the average of the Y_i s, while \overline{X} denotes the average of the X_i s. Assume that X_i is a binary variable that is either equal to 0 or to 1. Let n_1 be the number of units with $X_i = 1$, and let $n_0 = n - n_1$ be the number of units with $X_i = 0$. The difference between the average of the Y_i s among units with $X_i = 1$ and with $X_i = 0$ is $\frac{1}{n_1} \sum_{i:X_i=1} Y_i - \frac{1}{n_0} \sum_{i:X_i=0} Y_i$. The goal of the exercise is to show that $$\frac{\frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})(X_i - \overline{X})}{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2} = \frac{1}{n_1} \sum_{i:X_i=1} Y_i - \frac{1}{n_0} \sum_{i:X_i=0} Y_i$$ $$\overline{Y} - \widehat{\beta}_1 \overline{X} = \frac{1}{n_0} \sum_{i:X_i=0} Y_i.$$ Watch out, these results are only true when X_i is binary. 1) First, let's consider the denominator of $\frac{\frac{1}{n}\sum_{i=1}^{n}(Y_i-\overline{Y})(X_i-\overline{X})}{\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})^2}$. Show that $\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})^2=\overline{X}(1-\overline{X})$. Hint: remember that X_i is a binary variable. ### Solution You have shown during sessions that the variance of a binary variable is equal to its average multiplied by 1 minus its average. Therefore, $\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})^2=\overline{X}(1-\overline{X})$. - 2) Now, let's consider the numerator of $\frac{\frac{1}{n}\sum_{i=1}^{n}(Y_i-\overline{Y})(X_i-\overline{X})}{\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})^2}$. - a) Show that $\frac{1}{n} \sum_{i=1}^{n} (Y_i \overline{Y})(X_i \overline{X}) = \frac{1}{n} \sum_{i=1}^{n} Y_i X_i \overline{Y} \overline{X}$. ### Solution $$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})(X_i - \overline{X})$$ $$= \frac{1}{n} \sum_{i=1}^{n} (Y_i X_i - Y_i \overline{X} - \overline{Y} X_i + \overline{Y} \overline{X})$$ $$= \frac{1}{n} \sum_{i=1}^{n} Y_i X_i - \frac{1}{n} \sum_{i=1}^{n} Y_i \overline{X} - \frac{1}{n} \sum_{i=1}^{n} \overline{Y} X_i + \frac{1}{n} \sum_{i=1}^{n} \overline{Y} \overline{X}$$ $$= \frac{1}{n} \sum_{i=1}^{n} Y_i X_i - \overline{X} \frac{1}{n} \sum_{i=1}^{n} Y_i - \overline{Y} \frac{1}{n} \sum_{i=1}^{n} X_i + \frac{1}{n} n \overline{Y} \overline{X}$$ $$= \frac{1}{n} \sum_{i=1}^{n} Y_i X_i - \overline{X} \overline{Y} - \overline{Y} \overline{X} + \overline{Y} \overline{X}$$ $$= \frac{1}{n} \sum_{i=1}^{n} Y_i X_i - \overline{Y} \overline{X}.$$ 2nd equality: P3Sum and P2Sum. 3rd equality: P2Sum+ P1Sum. b) Show that $\frac{1}{n} \sum_{i=1}^{n} Y_i X_i = \overline{X} \frac{1}{n_1} \sum_{i:X_i=1} Y_i$. ## Solution $\sum_{i=1}^{n} Y_i X_i = \sum_{i:X_i=1} Y_i$. Indeed, both in the left hand side and in the right hand side summation, we are summing only the Y_i s of units with $X_i = 1$. Therefore, $$\frac{1}{n} \sum_{i=1}^{n} Y_i X_i = \frac{1}{n} \sum_{i:X_i=1} Y_i = \frac{1}{n} n_1 \frac{1}{n_1} \sum_{i:X_i=1} Y_i = \frac{1}{n} \sum_{i=1}^{n} X_i \frac{1}{n_1} \sum_{i:X_i=1} Y_i = \overline{X} \frac{1}{n_1} \sum_{i:X_i=1} Y_i.$$ The third equality follows from the fact that n_1 is the number of units with $X_i = 1$. Therefore, $n_1 = \sum_{i=1}^n X_i$. c) Use questions a) and b) to show that $\frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})(X_i - \overline{X}) = \overline{X} \left(\frac{1}{n_1} \sum_{i:X_i=1} Y_i - \overline{Y}\right)$ # Solution $$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})(X_i - \overline{X})$$ $$= \frac{1}{n} \sum_{i=1}^{n} Y_i X_i - \overline{Y} \overline{X}$$ $$= \overline{X} \frac{1}{n_1} \sum_{i:X_i=1} Y_i - \overline{Y} \overline{X}$$ $$= \overline{X} \left(\frac{1}{n_1} \sum_{i:X_i=1} Y_i - \overline{Y} \right).$$ 1st equality: questions a). 2nd equality: question b). 3rd equality: algebra. d) Show that $\overline{Y} = \overline{X} \frac{1}{n_1} \sum_{i:X_i=1} Y_i + (1 - \overline{X}) \frac{1}{n_0} \sum_{i:X_i=0} Y_i$. ## Solution $$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}$$ $$= \frac{1}{n} \sum_{i=1}^{n} Y_{i}(X_{i} + (1 - X_{i}))$$ $$= \frac{1}{n} \sum_{i=1}^{n} (Y_{i}X_{i} + Y_{i}(1 - X_{i}))$$ $$= \frac{1}{n} \sum_{i=1}^{n} Y_{i}X_{i} + \frac{1}{n} \sum_{i=1}^{n} Y_{i}(1 - X_{i})$$ $$= \frac{1}{n} \sum_{i:X_{i}=1}^{n} Y_{i} + \frac{1}{n} \sum_{i:X_{i}=0}^{n} Y_{i}$$ $$= \frac{1}{n} n_{1} \frac{1}{n_{1}} \sum_{i:X_{i}=1}^{n} Y_{i} + \frac{1}{n} (n_{0}) \frac{1}{n_{0}} \sum_{i:X_{i}=0}^{n} Y_{i}$$ $$= \frac{1}{n} \sum_{i=1}^{n} X_{i} \frac{1}{n_{1}} \sum_{i:X_{i}=1}^{n} Y_{i} + \frac{1}{n} \left(n - \sum_{i=1}^{n} X_{i}\right) \frac{1}{n_{0}} \sum_{i:X_{i}=0}^{n} Y_{i}$$ $$= \frac{1}{n} \sum_{i=1}^{n} X_{i} \frac{1}{n_{1}} \sum_{i:X_{i}=1}^{n} Y_{i} + \left(1 - \frac{1}{n} \sum_{i=1}^{n} X_{i}\right) \frac{1}{n_{0}} \sum_{i:X_{i}=0}^{n} Y_{i}$$ $$= \overline{X} \frac{1}{n_{1}} \sum_{i:X_{i}=1}^{n} Y_{i} + \left(1 - \overline{X}\right) \frac{1}{n_{0}} \sum_{i:X_{i}=0}^{n} Y_{i}.$$ 2nd equality: $X_i+1-X_i=1$, so we do not change anything when we multiply Y_i by X_i+1-X_i , same thing as multiplying by 1. 4th equality: P3Sum. 5th equality: $\sum_{i=1}^n Y_i X_i = \sum_{i:X_i=1} Y_i$, and $\sum_{i=1}^n Y_i (1-X_i) = \sum_{i:X_i=0} Y_i$. 7th equality: $n_1 = \sum_{i=1}^n X_i$. e) Use questions c) and d) to show that $$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})(X_i - \overline{X}) = \overline{X}(1 - \overline{X}) \left(\frac{1}{n_1} \sum_{i:X_i = 1} Y_i - \frac{1}{n_0} \sum_{i:X_i = 0} Y_i \right).$$ ### Solution $$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})(X_i - \overline{X})$$ $$= \overline{X} \left(\frac{1}{n_1} \sum_{i:X_i=1} Y_i - \overline{Y} \right)$$ $$= \overline{X} \left(\frac{1}{n_1} \sum_{i:X_i=1} Y_i - \overline{X} \frac{1}{n_1} \sum_{i:X_i=1} Y_i - (1 - \overline{X}) \frac{1}{n_0} \sum_{i:X_i=0} Y_i \right)$$ $$= \overline{X} \left((1 - \overline{X}) \frac{1}{n_1} \sum_{i:X_i=1} Y_i - (1 - \overline{X}) \frac{1}{n_0} \sum_{i:X_i=0} Y_i \right)$$ $$= \overline{X} (1 - \overline{X}) \left(\frac{1}{n_1} \sum_{i:X_i=1} Y_i - \frac{1}{n_0} \sum_{i:X_i=0} Y_i \right).$$ 1st equality: result of question c). 2nd equality: plugging result of question d). 3) Combine the results of questions 1) and 2) e) to show that $$\widehat{\beta}_1 = \frac{\frac{1}{n} \sum_{i=1}^n (Y_i - \overline{Y})(X_i - \overline{X})}{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2} = \frac{1}{n_1} \sum_{i:X_i = 1} Y_i - \frac{1}{n_0} \sum_{i:X_i = 0} Y_i.$$ # Solution $$\widehat{\beta}_{1} = \frac{\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \overline{Y})(X_{i} - \overline{X})}{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$ $$= \frac{\overline{X}(1 - \overline{X}) \left(\frac{1}{n_{1}} \sum_{i:X_{i}=1} Y_{i} - \frac{1}{n_{0}} \sum_{i:X_{i}=0} Y_{i}\right)}{\overline{X}(1 - \overline{X})}$$ $$= \frac{1}{n_{1}} \sum_{i:X_{i}=1} Y_{i} - \frac{1}{n_{0}} \sum_{i:X_{i}=0} Y_{i}.$$ 1st equality: result of questions 2) e) for the numerator, result of question 1) for the denominator. 4) Finally, use the result of question 3) to show that $$\widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \overline{X} = \frac{1}{n_0} \sum_{i: X_i = 0} Y_i.$$ ### Solution $$\begin{split} \widehat{\beta}_0 &= \overline{Y} - \widehat{\beta}_1 \overline{X} \\ &= \overline{X} \frac{1}{n_1} \sum_{i:X_i=1} Y_i + (1 - \overline{X}) \frac{1}{n_0} \sum_{i:X_i=0} Y_i - \widehat{\beta}_1 \overline{X} \\ &= \overline{X} \frac{1}{n_1} \sum_{i:X_i=1} Y_i + (1 - \overline{X}) \frac{1}{n_0} \sum_{i:X_i=0} Y_i \\ &- \left(\frac{1}{n_1} \sum_{i:X_i=1} Y_i - \frac{1}{n_0} \sum_{i:X_i=0} Y_i \right) \overline{X} \\ &= \overline{X} \frac{1}{n_0} \sum_{i:X_i=0} Y_i + (1 - \overline{X}) \frac{1}{n_0} \sum_{i:X_i=0} Y_i \\ &= \frac{1}{n_0} \sum_{i:X_i=0} Y_i. \end{split}$$ 2nd equality: question 2.d). 3rd equality: question 3). 4th and 5th equalities: algebra. Conclusion of the exercise. This exercise shows that $\widehat{\beta}_1$, the coefficient of X_i in OLS regression of Y_i on a constant and X_i measures the difference between the average of the Y_i s among units with $X_i = 1$ and with $X_i = 0$. Putting it in other words, $\widehat{\beta}_1$ measures the difference between the average Y_i of units whose X_i differs by one unit. $\widehat{\beta}_0$ measures the average of Y_i among units with $X_i = 0$.