The coefficient of an OLS regression of Y_i on a constant.

Assume that you have a population with N units. Let y_k denote the value of the variable y_k for unit k in the population. You do not observe the values of the y_k s, and you would like to predict those values. However, contrary to the examples seen in class, you do not have any other variable x_k that you observe for all units, on which you can base your prediction. Therefore, you cannot regress y_k on x_k , like in the "OLS 1" slides, or on a constant and x_k , like in the "OLS 2" slides. Instead, you are going to regress y_k on a constant.

- 1. The coefficient of the constant in that regression is $\alpha = \underset{a \in \mathbb{R}}{\operatorname{argmin}} \sum_{k=1}^{N} (y_k a)^2$. Show that $\alpha = \frac{1}{N} \sum_{k=1}^{N} y_k$.
- 2. Can you compute α ?

Assume that we draw without replacement a random sample of n units from the population, and for those units we measure their value of the variable y. Let Y_1 denote that value for the first unit we draw, let Y_2 denote that value for the second unit we draw, ..., let Y_n denote that value for the nth unit we draw. $Y_1, Y_2, ..., Y_n$ are independent and identically distributed random variables.

- 3. Show that $E(Y_i) = \frac{1}{N} \sum_{k=1}^{N} y_k$.
- 4. Based on our random sample, our estimator of α is $\widehat{\alpha} = \underset{a \in \mathbb{R}}{\operatorname{argmin}} \sum_{i=1}^{n} (Y_i a)^2$. Show that $\widehat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} Y_i$.
- 5. Show that $\widehat{\alpha}$ is an unbiased estimator of α .
- 6. If you are asked to predict the value of y for a unit not in your sample, what will be your predicted value for the y of that unit?

Solution

1. Using chain rule and P4Sum, derivative of $\sum_{k=1}^{N} (y_k - a)^2$ wrt to a is $2\sum_{k=1}^{N} (a - y_k)$. Let's

find the value of a at which this derivative is equal to 0:

$$2\sum_{k=1}^{N} (a - y_k) = 0$$

$$\Leftrightarrow \sum_{k=1}^{N} (a - y_k) = 0$$

$$\Leftrightarrow \sum_{k=1}^{N} a - \sum_{k=1}^{N} y_k = 0$$

$$\Leftrightarrow Na - \sum_{k=1}^{N} y_k = 0$$

$$\Leftrightarrow Na = \sum_{k=1}^{N} y_k$$

$$\Leftrightarrow a = \frac{1}{N} \sum_{k=1}^{N} y_k.$$

2nd equivalence: P3Sum, 3rd equivalence: P1Sum.

Derivative is increasing in $a \Rightarrow$ negative to the left of $\frac{1}{N} \sum_{k=1}^{N} y_k$, and positive to the right of $\frac{1}{N} \sum_{k=1}^{N} y_k$. Therefore, $\sum_{k=1}^{N} (y_k - a)^2$ reaches a minimum at $\alpha = \frac{1}{N} \sum_{k=1}^{N} y_k$.

- 2. No you cannot, as you do not observe the y_k s.
- 3. Y_i can be equal to:
 - y_1 if the *i*th unit we randomly draw is unit 1. Probability that this happens is 1/N.
 - y_2 if the *i*th unit we randomly draw is unit 2. Probability that this happens is 1/N.
 - ...
 - y_N if the *i*th unit we randomly draw is unit N. Probability that this happens is 1/N.

Following the definition of the expectation of a random variable:

$$E(Y_i) = y_1 1/N + y_2 1/N + \dots + y_N 1/N$$

$$= 1/N(y_1 + y_2 + \dots + y_N)$$

$$= 1/N \sum_{k=1}^{N} y_k.$$

4. Using chain rule and P4Sum, derivative of $\sum_{i=1}^{n} (Y_i - a)^2$ wrt to a is $2\sum_{i=1}^{n} (a - Y_i)$. Let's

find the value of a at which this derivative is equal to 0:

$$2\sum_{i=1}^{n} (a - Y_i) = 0$$

$$\Leftrightarrow \sum_{i=1}^{n} (a - Y_i) = 0$$

$$\Leftrightarrow \sum_{i=1}^{n} a - \sum_{i=1}^{n} Y_i = 0$$

$$\Leftrightarrow na - \sum_{i=1}^{n} Y_i = 0$$

$$\Leftrightarrow na = \sum_{i=1}^{n} Y_i$$

$$\Leftrightarrow a = \frac{1}{n} \sum_{i=1}^{n} Y_i.$$

2nd equivalence: P3Sum, 3rd equivalence: P1Sum.

Derivative is increasing in $a \Rightarrow$ negative to the left of $\frac{1}{n} \sum_{i=1}^{n} Y_i$, and positive to the right of $\frac{1}{n} \sum_{i=1}^{n} Y_i$. Therefore, $\sum_{i=1}^{n} (Y_i - a)^2$ reaches minimum at $\widehat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} Y_i$.

$$E(\widehat{\alpha}) = E\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}E(Y_{i})$$

$$= \frac{1}{n}\sum_{i=1}^{n}\frac{1}{N}\sum_{k=1}^{N}y_{k}$$

$$= \frac{1}{n}n\frac{1}{N}\sum_{k=1}^{N}y_{k}$$

$$= \frac{1}{N}\sum_{k=1}^{N}y_{k}.$$

1st equality: P2Expectation and P3Expectation. 2nd equality: question 3. 3rd equality: P1Sum.

6. Our predicted value will be the coefficient of the constant in the regression which is $\frac{1}{n}\sum_{i=1}^{n}Y_{i}$. In other words, if we use a regression of y on a constant to predict the value of y for a unit not in the sample, our prediction will just be the average y of units in our sample.